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Abstrac:t-The stress intensity factor history due to the uniform elltension of a planar crack in an
unbounded elastic body under three-dimensional time-independent loading is considered. First. a
fundamental (point force) solution is obtained. and this is used to write down the form of the stress
intensity factor history for general loading in terms ofa superposition integral. A particular traction
distribution is also considered.

l. INTRODUCTION

In this article the uniform extension of a half-plane crack in an unbounded elastic body
under time-independent loading is considered. This problem is the three-dimensional ana­
logue of the plane strain problem solved by Freund[l). In Ref. [I] the solution for general
loading is obtained by !irst obtaining a fundamental (concentrated force) solution, and then
writing the general solution as a superposition integral.

The fundamental solution to this problem is obtained via the method used by Freund[2]
to investigate the impact loading of a half-plane crack. After defining coordinates moving
with the crack edge, application of Laplace transforms in time and space results in a
certain functional equation which is solved by the Wiener-Hopf tcchnique[3]. This yields a
formulation of the field potentials in terms of triple inversion integrals. Attention is then
directed towards the stress intensity factor as a function of time and distance along the
crack edge, and it is shown that this may be written in terms of a single integral by use of
the deHoop method of inversion[4). A similar analysis to that presented in this paper has
been used by Ramirez[5] to investigate the stress intensity factor history due to the motion
of point loads on the faces of a half-plane crack.

Once the stress intensity factor history along the crack edge is determined for the
fundamental solution, the stress intensity factor for general loading is obtained in integral
form by superposition. The paper concludes with the consideration of a particular loading
situation.

2. TilE FUNDAMENTAL SOLUTION

2.1. The hasic prohlem
Consider a half-plane crack moving at speed l' in the x-direction, with the crack line

oriented parallel to the =-axis in the plane y = 0 (see Fig. I). The location of a point on the
crack edge is then given by the position vector (VI, 0, =). At time t = 0 a pair of point forces
appear at the tip of the crack, one acting on the upper face of the crack at point (0,0+,0)
and the other acting on the lower face of the crack at point (0,0 -,0). The directions of the
forces are along the outward normals to each face, i.e. they tend to open the crack. For

t This work was done whilst the author was a Research Associate in the Division of Engineering. Brown
University, Providence, RI 02912. U.S.A.
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Fig. I. The geometry of the elastic body.

time 1 > 0 the forces continue to act at the origin. whilst the crack continues to move in the
x·direction with speed v. Using symmetry with respect to the plane y = 0, only the region
y ~ 0 need be considered. The boundary conditions for displacements (u) and stresses (0')
are

O'y,'(X. O. =. t) = H(l) (}(x) J(:). x < l'1

O'T"(X, 0.:. t} = l1y;(x. O. =. t) = O. - 00 < x < co

lly(X. 0.:. t) = O. x > l't

(I)

with all fields zero for t < O.
The scalar dilatational wave potential 1> and the vector shear wavc potential '¥ =

('fin "Pi" '1';) arc now introduced. The potential 1> satisfies the scalar wave equation

(2)

where a- I is the speed of dilatational waves in the elastic body. The potential '¥ satisfies a
similar equation with a replaced by h, where h' I is the shear wave speed. Also. the shear
wave potcntial is divergence free. i.e.

V",¥ = o. (3)

It proves convenient to work with a coordinate system moving with the crack front.
If the variable ~ = x - VI is introduced. eqn (I) for t/J becomes, in the new coordinate system
(e.y. :)

(4)

where d = l/v. The shear wave potential '¥ satisfies eqn (4) with a replaced by b.
It is expected that

(5)

where k, is the stress intensity factor variation along the crack edge, which is to be deter­
mined.
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2.2. Solution procedure
Transform techniques are now used to determine k l . The following equations are

written in terms of the dilatational wave potential c/t-the shear wave potential may be
treated in a similar manner.

First, the one-sided Laplace transform over time is introduced. The parameter is s,
and the transformed function is denoted by a superposed hat. Thus

tfi(~,y,;:,s) = 1'" cP(~,y,:,t) e- Sl dt. (6)

For the present, s may be considered to be a real positive parameter.
Next, the dependence on : is suppressed by taking a two-sided Laplace transform with

parameter s'. The transformed function is denoted by a superposed bar, i.e.

(7)

The domain of convergence of this transform is now examined. Noting that the
dilatational waves have the greatest speed, the fields will be zero outside of the sphere
x 2+ y2+;:2 = t~/a~. Hence it suflices to examine the convergence of transform (7) when cP
is given by

(8)

where H(') is the Heaviside step function.
Consideration of the transform of this function (with ~, y fixed and s > 0) indicates

that convergence is satisfied for - acJ/(cJ 2
- a2

) 1/2 < Re ( < acJ/(cJ 2
- a2

) 1/2. For the present
it proves convenient to consider ( as a real parameter within this range-the transform may
be analytically continued into its region of convergence in the complex (-plane when
necessary.

Finally, a two-sided Laplace transform over ~ is taken. The transformed function is
denoted by a capital letter, and the transform parameter is S'1, i.e.

(9)

The domain of convergence of this transform is investigated by using the step function
defined in eqn (8) coupled with the range of ( given in the above paragraph. It is found
that, for convergence, '1 must lie in the strip

(10)

where

(11 )

and

(12)

The governing equations for the potentials cP and 'fI are now transformed, leading to
the ordinary differential equations
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( )'., 2 ".. "" .. "
,C==a 1--;/ -1'1'- .. -

(13)

(14)

The solutions to eqns (13) may be written in the form

"'( r) A(". (. S).111''V',.Y.... s == ---,- e
s'

( 15)

where the forms of the constant terms arc introduced for convenience·· it turns out that A
and B arc independent of s.

The boundary conditions arc now transformed. With reference to eqns (I). define
functions (1 ~ and u _ by

(1 ~ (~' =.f) == (1},.(~. O. =. f). ¢ > 0

II- (¢. =. t) == uv(~. 0.:. f). ¢ < O.

The boundary conditions then transform to

with, the functions U_ and 1: ~ defined by

and

(16)

( 17)

( 18)

(19)

(20)

It should be noted that L+ is an analytic function of" for Re ('I) > - (11. and U_ is
an analytic function of" for Re ('0 < al. where a2.1 are defined in eqn (II). From now on.
a plus sign denotes a function analytic for Re (f/) > - a2' and a minus sign a function
analytic for Re (f/) < al'
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Equation (17) may be manipulated into the form

H + (". (.s)
1:•• (".0, C, s) = ( J\

•. S "-"J
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(21)

(22)

Using the relationships of potentials to stresses and displacements[6], the transformed
boundary conditions (18), (19), (21) and eqns (3) and (15), the following system ofequations
relating A, B. H+ and U_ is obtained:

[b 2(1-"fd)2 - 2,,2 - 2(2]A - 2PCBx+2p"B: = H + fJl(,,-d)

2"~A+(P2_C2)Bx+,,PBy+,,'B:= 0

2(~A-,,(Bt-(PBy+(,,2_(2)B: = 0

~A -(Bt +"B: = U_

"Bt-PBy+(B: = O.

(23)

It is noted that s does not appear in the above equations, and hence A, B, H+ and U_
are functions of" and ( only. Reduction of the system of eqns (23) shows that U_ and H +

are related by

with

H+ (". () Jld
2

R(", ()
U_(".() = -17 ("-d)~(,,.()

(24)

Equation (24) is now solved for H+ and U_ by use of the Wiener-Hopf technique[3].
The first step is to manipulate the equation into a relationship between a plus function and
a minus function.

The function R may be written in the form

(26)

where

(27)

with

(28)

Equation (27) is the Rayleigh wave function[6] (in ;.), and has two, and only two, roots
A. = ±c, where c is the inverse of the Rayleigh wave speed. Hence R(". C) has roots in the
,,-plane which are solutions of

(29)

These roots are
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(30)

where

(31)

By inspection it may be seen that R(".O also has a zero at " = d. To find the order of
this zero. it is noted that '7 = d corresponds to ;. -+ 00 in eqn (27). A simple expansion shows
that R = 0(1/).::).;. -+ 00. and this. coupled with eqn (28) shows that R has a double zero
at '7 = d. Hence R has four. and only four. zeros in the complex ,,-plane. these being the
real zeros" = d. d. CI' -C::.

Consider now a function S defined by

where

k .' R('I.() , 1'1' '1'1" h'/I". = -11111-1 = 4(I-cr/t ')'(I-h'/t') "-(2- . c')'.
? , 'I

(32)

(33)

The function S has no poles or zeros in the 'I-plane. the only singularities being the
brandt points of the functions:x and II. Note that the branch cuts ofall functions considered
here arc taken to lie on the real axis outside of the strip of analyticity. -a:: < Re (,,) < aJ,
of the transforms. The function s may be written as the product of a plus function and a
minus function via use of Cauchy's integral theorem [7J. The result is

where

S(".~) = S, (II. OS ('1.0 (34)

with

(36)

Note that a::. 1 and h::. 1 are the branch points of functions :x and fl. respectively.
With reference to eqn (24). it remains to split the function 01'. This may be achieved by

writing

(37)

with

(38)

and
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1%+ (". 0 = [a2G) +,,] Ij2

1%_(".0 = [a,<o-,,]1/2.

By use of eqns (34) and (37). eqn (24) may be manipulated into the form
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(39)

The right-hand side of the above equation is analytic for Re (,,) < ai' the left-hand
side is analytic for Re (,,) > -a2. and hence, by analytic continuation. each side ofeqn (40)
represents the same entire function. Use of continuity of displacement at the crack tip
and the asymptotic form (4) of (1yy shows that each side of eqn (40) tends to a constant as
" ..... 00 in the respective half planes. Hence, by Liouville's theorem, the entire function
represented by each side of eqn (40) is a constant, and use of eqn (22) then gives

(41)

The function U_ may be obtained by replacing H + in eqn (40) by the above result.
Having solved the functional eqn (40). the displacement potentials may be written

down in the form of triple inversion integrals. However. it turns out that the stress intensity
factor k l (=./) may be obtained in the form of a single real integral.

2.3. De/ermina/ion of the function k. (=, /)
The analysis in this section follows closcly that used by Freund[2). With reference to

eqn (3). the transformed stress intensity factor may be written as

(42)

Use of Abels' theorem on the asymptotic properties of transforms[7] gives

and this result. coupled with eqns (21) and (41), yields

. (2)1/2
kl«(.S) = d ~ Q(O

with

(43)

(44)

(45)

After relaxing the constraint that ( is rea( inversion of the Laplace transform over z
gives

where

d (S)I/2 iq+i'Xl
/(,(=,s) = -: - Q«() eZ

" d(
7tI 2 q-ioo

(46)
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t - plane

Qo bo

q

Fig. :!. Deformation of the inversion path in the complex (-plane.

-an < q < ao (47)

with an defined in eqn ( 12).
It is desired to write eqn (46) in such a way that the inversion of the one-sided

Laplace transform over time m.IY be obt.tined via a convolution integral. The function
Q(O = 0«( 1 ~). (-+ 00. and Jordan's lemma may be used[7) to deform the integral in eqn
(46) onto the branch cut from - an to - 00. if -: > 0 is assumed for the present. On noting
that Q«() = Q(;) and that Q is an even function of (. kl may be written in the form

• -" (2s) 112iCk.(:.s) = .. - -._- 1m [Q(u/-:+iO)] e .fU du
1t : "t)..~

(48)

where the iO part in the argument of function Q indicates evaluation on the upper side as
the branch cut from -au to - Cf..; (sce Fig. 2).

In order that the convolution theorem for Laplace transforms may be applied. kl must
be written as the product of two such transforms. The integral term in eqn (48) is itself a
Laplace transform. but the SI/2 term multiplying it is of too high an order to be such a
transform. To rectify this. a function H is defined by

Dff(:.l)
k l (:.1) = ""-,," ; 11(:.0) = O.

Cl

Then

which. coupled with eqn (~8), yields

I ("')1:21r,
H(:.s) = ~_:: 1m [Q(u/:+iO)] e'.fU du.

... TC Sell':

(49)

(50)

(51 )

The integral tcrm in the expression for H is the Laplace transform of Q(u/:+iO)H(u
-an:) and the s l~ term is the Laplace transform of (1tt)-li~. It follows. by convolution.
that. for: > 0
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_ d (2)11 I' [Q(uj:+i.O)]
H(_./) =:- - 1m 11 du,

_7t 1t ",,: (/-u)

= 0, 1< ao=.

I> ao:
(52)

Upon noting that k,(=, I) is an even function of =, use of eqns (49) and (52) gives

k (- ) - ~ (~)I 1 ~ I' I [Q(ujl=1 + iO)] d
1_,1 - m I" U.

7t1=1 7t CI ",J=I (/-U) I.

= 0, 1=1 > Ijao.

Integration by parts gives. finalIy

., I 1

k,(=./) = (7ti=I>J,~k(r) (r> I)

=° (r < I)

where k(r) is the dimensionless integral

. _ 'i~lr [Q'(vao+iO)],
k(r) - ciCio 1m· ( )'IZdl

I I-l'

with

r = IjClol=l.

1=1 < Ijao

(53)

(54)

(55)

(56)

It is noted that the parameter Clo defined in eqn (12) is such that ao I is the apparent
speed at which dilatational waves move along the crack edge. Hence, as indicated byeqns
(54). the first dilatational wave reaches a lixed point on the crack line at time 1= aoJ=I.
Similarly. the quantities

ho = hdj(d~ -h~) I!~; CO = cdj(d~ -c~) I/~ (57)

arc such that hi) 1 and Co I are the speeds at which shear waves and Rayleigh waves move
along the crack edge. respectively-note that (lo < ho < Co.

2.4. Properlies of k,(=.t)
One interesting feature of k,(=./) is that it is discontinuous at the front of the pulse

generated by the point loads. The jump may be written as

!:J.k l = lim [k,(=./)1
t-.",J:l"

and it may be shown, by a simple asymptotic analysis of the integral in eqn (55). that

(58)

The asymptotic form of k. (=. I) for large I at a fixed point =is also of interest.
With reference to eqns (54), this asymptotic result may be obtained by fixing =and
letting 1- 00. This limit is equivalent to holding I fixed and letting =-> 0, and hence,
as k.(O, I) is expected to be finite. the function k(r) must have the property that
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(60)

where p is a constant. Consequently

t/l=1 - 00. (61)

The constant p is found in the Appendix by an asymptotic analysis of the integral
defining k(r).

One useful check on the result obtained for k,(=, t) is that it should reduce to the stress
intensity factor history for the corresponding two-dimensional line load problem solved by
Freund[l] when integrated over the range - 00 < =< 00. If the integration is performed
on eqn (46), and the transform over time inverted, the result is

(62a)

which agrees with the result presented by Freund[l].
Another check on result (54) is that if the wave slownesses are nominally set equal to

zero in eqns (54), k,(=, t) should reduce to the corresponding stress intensity factor for the
static problem of a pair of unit normal line loads applied to the faces of a half plane crack
at a distance tid from the crack edge[S]. Letting a. h, c -+ 0 in eqns (54) gives

k (= t) =1. (~~~)1/2 1 _
" 2 Ttt I + (d=lt) 2

(62b)

which agrees with the static result given in Ref. [8].
A numerical integration of the non-dimensional function k(r) is now carried out.

Before continuing, the function S + (t1, 0 is written in a more convenient form for com­
putations. Using eqns (26)-(28) for motivation, the substitution

(63)

is made in the integral part of the function S+ defined in eqn (35).
This leads to

(64)

where

(65)

with

(66)

Consider now the non-dimensional function k(r) defined by eqn (55). It can be seen.
that k(r) = k(hla, cia, cld, t) and hence, if the ratios bla and cia are fixed, the variation of
k with r is a function of cld only.



The stress intensity factor history for an advancing crack 295

In Fig. 3 the function k is plotted against r for various values of c,!d when Poisson's
ratio v = 0.3 (b = 1.87a. C = 2.02a). The graphs show that the stress intensity factor at a
fixed point: starts at a negative value upon arrival of the first dilatational wave at time
1= aol:l. There is a kink in each curve corresponding to the arrival of the first shear wave
at time I = bol:l. and a logarithmic singularity when the first Rayleigh wave arrives at
time I = col:l. After this time the stress intensity factor stays positive and decays like 1- J! Z

as I --+ IX).

3. GENERAL LOADING

The arguments used in this section are similar to those used by Freund[I] for the mode
I plane strain problem. The fundamental solution derived in Section 2 is used to write the
solution for general loading as a superposition integral.

The crack is considered to be stationary for time I < 0 under equilibrium loading. with
the normal stress on the half-plane y = 0 ahead of the crack being given by (1"" = - p(x. :).
with the minus sign introduced for convenience. At time I = O. the crack begins to move
with speed I' in the positive x-direction. creating new stress-free surfaces (0 < x < 1'1. Y = 0 +.
- oc, < : < 00). The resulting field may be considered to be the superposition of a dynamic
field created by imposing tractions p(x.:) (0 < x < 1'1. - 00 < : < 00) on the crack faces.
and a static field corresponding to the equilibrium field. The solution to the dynamic
problem is now obtained in integral form.

Consider the point-load problem of Section 2. with the exception that point loads of
strength p(x'. :') dx' d:' pass through the edge of the crack at the point x = x'. : = :' at
time 1= (' = x'/I'. The corresponding stress intensity factor is given. as a function of:
and I. by k,(:-:'. I-X'/I')p(X'.:') dx' d:'. The full dynamic stress intensity 1:lctor hi
corresponding to the applied traction p(x'. :') may conselJuently be written as

f' f'"hl(:.I) = kl(:-:',I-x'll')p(x'.:') dx' d:'.
,. 0

(67)

This formulation of hi is useful for numerical computations involving a given traction
distribution. However. if further analytic manipulation of hi for a specific traction dis­
tribution is desired. it may be better to work with eqn (46) and build up an alternative
integral form for K,. This is made dear in the next section, where a particular loading
situation is considered.

3.1. A particular traclion cli.l'lrihlllion
The traction distribution considered is the constant rectangular distribution

p(x.:) =1'0; O<X<VI. -:0<:<:0' (68)

The solution to this problem may be obtained via the superposition of concentrated
line loads. i.e.

K. (:. t) = Po l' k,*(:. / - x'/1') dx' (69)

where k~(:. /) is the stress intensity factor for a unit line load offinite length (-:0 < : < :0)
passing through the crack tip at time I = O.

The first step in the procedure is to investigate k('. which may be written as
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Fig. 3. The normalized stress intensity factor history k '" (1tI=I)'12k,fJ2 vs t = t/aol=1 for the
fundamental solution.
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Using eqn (~6), eqn (70) becomes

• d (S)Ukt(:, s) = ~,. l(s,:)7tt _

where

f:o iq + 1>;,

l(s, z) = dz' , Q(O e'I:-:), de
-:0 jf -I:J:
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(70)

(71)

(72)

and 0 < q < (It).

Interchanging the order of integration, and evaluating the integral over z', leads to

where

lq+lt: Q(O
lex, s) = . -.- e"; dC.

q -I <; ~

(73)

(74)

For simplicity, z > 0 is assumed for the present. Upon noting that Q(O = Q(C), and
also that Q«() = Q( -0, the integral 1 may be manipulated into the form

with

J(x) = 21ti Q(O) - 2i J I (x, .1'), X > 0

=2iJ ,(-x.s), x<O

l' [Q(II+iO)]J1(x,s) = 1m --- e H/4 du.
"II U

(75)

(76)

by
Consequently, with reference to eqns (71) and (73), the time transform of k~ is given

It is noted that there is an apparent jump in k~ at z = Zo given by

.it: [Q(U+iO)] .6k.*(zo,S) = 41 1m du-27tt Q(O)
"0 U

(78)

but consideration of the integral J(O, .1') defined in eqn (74) shows that 6k( = O.
s~s H: )-lII
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Inspection of the fonn of the integral J 1 defined in eqn (76) shows that it is of the fonn
for which the convolution theorem for Laplace transforms may be applied to eqns (77).
This results in the following integral form for kt (with:: > 0) :

<.1(2)1 ::
k,*(:./} = - - [g(: - =0.1) -g(=+ =0. t)). 1=1 > =0

it rr

with

it [Q{U/X+iO>] da
g(x. t) = 1m· -- (---) I:::' x> O.

,I,.' U I-It

(79)

=< =0

(80)

The stress intensity factor for the rectangular distribution may be found from eqn (69). The
result. after some algebraic manipulation. is

where

:: < =0 (8Ia)

(SIb)

(82)

Note that:: > () hus been assumed. The results for =< 0 mtly be written down after
noting that Kl is an even function of :.

Consider Kd:./) in the range -:n <:: < ::(). The tirst term in cqn (8Ia) is: the stress
intensity t~u::tor history for a distribution of strength Pit with infinite extent in the ;­
direction·-this may be obtained by a superposition integral using the line load solution
obtained by Freund[l]. The second and third terms urc corrections which take into account
the nnitencs~ of the traction distribution in the =-dircl:tion-they may be considered to
correspond to waves emanating from the boundaries:: = ±=1l or the trdction distribution
on the crack edge. The contribution to K1 from these terms tends to zero for large values
of =0- .For : > :0, K. may be thought of as the ~;upcrpositionof two waves centred at the
points:: = ±=u on the crack line.

With reference to eqn (82), a non-dimensional integral J J(i.} is defined by

(83)

In Fig. 4 the integral JJ is plotted ag,lins! J. for various values of cldwhen Poisson's ratio
\' =0.3 (b == 1.87a. c == 2.02(1). Note that, unlike the results from Section 2, there is no
discontinuity in the stress intensity factor when the first dilatational wave arrives at a fixed
point:: on the erack edge. Also. the stress intensity factor does not become singular when
the first Rayleigh wave rcaches the fixed point ;,
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APPENDIX

The asymptotic form for large r of the function k(r). as detined in eqn (55). is considered. First. k(r) is written
in the form

d ,'f
k(r) '" --.._

;I n ('!

with

I(r) = i"" h2lrq(lI+i(;~1 dll
". (ran -II)

where Q is defined in eqn (~S).

A simple asymptotic analysis of Q shows that

1111 [Q(II+ ill)1 - .-I(II-an) ,: +0(11 1 :). II-Xj

with constant A being given hy

where

The integral I(r) dclined in lim: (A~) may be written in the form

i'"" { A } dll i'"' dllI(r) = Im[Q(II+iO)I- -----Tl ---u +A -~---i;: ----. --·'.-i·
"" (II-a,,) (ra,,-II) , (W,,-II) (II-an)

Letting r - ,of) results in

!(r)-rrA+(a"r)-':i"{II11[Q(II+iOll - A ,.:}dll'
" (II-a,,)

finally. from elln (A I). k(r) satisfies

k(r) -I'r I: r-.x;

with conslant I' being given hy

(AI)

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)


